Investigation of antiscalant dosing influence on scaling process in reverse osmosis facilities and membrane surface adsorption
نویسندگان
چکیده
منابع مشابه
Investigation of the Effect of Copolymer Antiscalant on TDS Removal Efficiency in Reverse Osmosis Membrane
Background & objectives: Nowadays, according to membrane-based filtration processes; the use of substances such as antiscalants that prevents the formation of deposits during the treatment process, is very important from industrial point of view. This study aimed to synthesize styrene-maleic anhydride copolymer (PSMA) using the radical polymerization method and to investigate the factors and pa...
متن کاملEffect of Organoclay on the Performance of Reverse Osmosis Membrane
This study investigated the effect of Cloisite15A (C15A) organoclay in the substrate layer on the performance of reverse osmosis (RO) membranes. The substrate of the RO membranes was modified using different loading of C15A (ranging from 0.3 - 0.7 wt%) within polysulfone (PSf) substrate and the polyamide (PA) selective layer was formed on the top. Effect of the modified substrate layer on the w...
متن کاملThe Effect of Osmotic Dehydration on Reverse Osmosis Membrane Performance
Akin type (asymmetric) reverse osmosis membranes undergo an irreversible osmotic dehydration upon coming into contact (skin side) with salt solutions. The extent of consequent changes (in appearance; decrease in linear dimension, water flux and salt rejection) are dependent on the salt concentration. These observations are correlated with the expected morphological changes taking place duri...
متن کاملEffects of membrane fouling and scaling on boron rejection by nanofiltration and reverse osmosis membranes
متن کامل
Study of the Effect of Nanoparticles and Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Productivity
To evaluate the significance of reverse osmosis (RO) and nanofiltration (NF) surface morphology on membrane performance, productivity experiments were conducted using flat-sheet membranes and three different nanoparticles, which included SiO2, TiO2 and CeO2. In this study, the productivity rate was markedly influenced by membrane surface morphology. Atomic force microscopy (AFM) analysis of mem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Vestnik MGSU
سال: 2019
ISSN: 1997-0935,2304-6600
DOI: 10.22227/1997-0935.2019.6.722-733